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Kinetic phase transition in polymerization
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We study the kinetics of a simple mean-field model of multifunctional polymerization. We are
able to derive some exact results for the time dependence of some quantities of interest by making
use of a transformed time variable. The gel fraction and the average of the reciprocal of the degree
of polymerization are both evaluated in this model and exhibit nonanalytic behavior at the gelation

point.
PACS number(s): 82.35.+t

Studies of the kinetics of the polymerization process
and the approach to gelation pose a number of inter-
esting problems in the physics of polymers [1-7]. The
central quantity of interest is the distribution function
P(N,t), defined as the probability that at time ¢ a ran-
domly selected site, which must be occupied either by a
solvent molecule or by a monomer, is in fact occupied by
a monomer forming part of a polymer molecule of degree
of polymerization N. The time at which P(oo,t) first
becomes nonzero marks the gelation transition.

In this paper we present a procedure for calculating
P(N,t) in a simple kinetic model. Rather than adopt
the combinatorial arguments of the early workers in this
area [8-10], we use a generating-function technique to
solve the differential equations for the various P(N,t).

J

d

dt m4n=N

where Ay, is a cutoff function to be described later and
A(N) is a function of N that depends on the function-
ality of the monomer. For example, for a fully multi-
functional monomer we assume that A(N) = 1 and is
independent of N, since every site of a polymer remains
capable of reaction with another polymer. For a bifunc-
tional monomer, on the other hand, A(N) = #, since
only the two end sites of a polymer chain are available
for reaction. In the present work, we consider only the
fully multifunctional case, and so put A(N) = 1.

On intuitive grounds one expects the end result of
Eq. (1) to be a single macromolecule of infinite size.
There are, however, some mathematical subtleties in-
volved in observing this phenomenon, as an approach
that is too simpleminded risks violating the mass-
conservation law, which demands that Y %_, P(N,t) re-
main equal to p at all times. Accordingly we have artifi-
cially imposed an upper limit N, to the size of molecules
by including in Eq. (1) a cutoff function Ay, (m,n) de-
fined as

Aw,(m,n) = { (2)

The limit N, — oo is then taken after the completion of
the formal calculations.

1 for min(m,n) < N,
0 otherwise .
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In this model the P(N,t) are analytic functions of time
for all finite N, but P(oo,t) is nonanalytic at the gelation
time tgey.

We start by considering a mixture of monomers with
nonpolymerizable solvent molecules in which the molecu-
lar fraction of monomers is p. In a polymerization process
two molecules, of degree of polymerization m and n, re-
spectively, combine to form a polymer of degree m + n.
We denote by k the reaction rate constant describing the
probability per unit time that an available reaction site
becomes bonded; in the mean-field approximation used
here this rate does not depend on time or any other vari-
able. The master equations for the distribution functions
P(N,t) with N > 1 are derived in the Appendix and are
of the form

SP(Nt) = -'% Y A(m)P(m,t)A(n)P(n,t)An, (m,n)~kNA(N)P(N,t) 3 A(m)P(m,t)An, (m,N). (1)

m=1

r

The first term in Eq. (1) represents the rate at which
polymers of degree of polymerization m and n combine
to produce one of degree of polymerization N (= m+n).
The second term represents removal of these N monomer
units from the class contributing to P(N,t) when a fur-
ther reaction occurs. The kinetic equation for P(1,t)
can be obtained from Eq. (1) by imposing the boundary
condition

P(0,t)=0. (3)

If at time ¢ = 0, only monomers and solvent are
present, then

P(1,0) = p, P(N,0) = 0 for N>1. (4)

Introducing a normalized time 7 = kpt and normalized
distribution functions Q(N, 1) = P(N,t)/p, we find, for
N < N,

d N

2N, == Y Q(m,m)Q(n,7) — NQ(N,7),
m+n=N

(5)

where the conservation law has been used in obtaining

the second term. The initial and boundary conditions

are
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Q(1,0) =1, Q(N,0) =0 for N>1
(6)
Q(0,7) = 0.
The solution for Egs. (5) is, for N < N,

Q(N,7)=gqnTV"le VT, (7)

where the coefficient gn is independent of 7 and can be
found recursively from the relations

N = '2T1V£_—1-) Z dmQn (8)
N

m+n=

with q1 = 1.

It is tempting to think that Egs. (7) and (8) might
provide the complete solution for all N, without the need
for a cutoff. One is disabused of this idea, however, when
one notes that for 7 > 1 every term in Eq. (7) decreases
monotonically with time. (A few of these are illustrated
in Fig. 1.) It is thus impossible to obey the mass con-
servation law without approaching the question of the
infinite-mass component more circumspectly. The large-
N limit of 7N~1e~N7 resembles a § function, and this
suggests that a transition occurs at 7 = 1 to a state in
which the infinite-mass component plays an important
role.

While the general evaluation of Q(N,7) for all time
is somewhat difficult, we can obtain the two most use-
ful physical quantities from the calculation fairly readily.
These two quantities are the gel fraction P(oo,7) and the
average inverse degree of polymerization (1/N). This lat-
ter quantity is an important parameter in the evaluation
of the Flory-Huggins free energy [11-15] used in some
theories of phase separation [11].

In terms of the normalized distribution, the mass con-
servation law is

Ny
1= Q(N,7) + Q(Nu,7) , (9)
N=1

where Q(Ny,7) = Y N—n.4+1 Q(N,7) and is the “miss-
ing mass” accounting for contributions from all polymers
with degree of polymerization larger than N,. At large
times this term is not necessarily equal to zero in the limit
N, — co. Indeed, we will see that Q(oo,7), the normal-
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FIG. 1. The distribution functions Q(NV, 7) as a function

of T at various values of N: from top to bottom, 2, 4, and 6.

ized probability of finding a polymer with infinite degree
of polymerization at the normalized time 7, undergoes a
transition from zero when 7 is increased, reflecting the
onset of gelation.

Writing the conservation law at the limit N, — oo, we
have

T

11 i: an (2)" +Qloorr) (10)

eT

As we have seen, the function 7e™" has its maximum
value at 7 = 1, and so we hazard the guess that
Q(00,7) = 0 for 7 < 1 and is nonzero for 7 > 1. To
check the validity of this assumption we define the gen-

erating function

G(r)= i Im (el,)m . (11)

Combining this with the recursion relation, Eq. (8),
which tells us that

> T\™ G
— - 12
,;mq'"(e’) —a (12)
we find the nonlinear differential equation
l—G('r)iG _1—'r. (13)

G &=

The solution of this equation that satisfies the initial con-
dition G(0) = 0 has the remarkably simple form

G(r)=71. (14)

Substitution of this result into Eq. (10) seems to sug-
gest that Q (oo, 7) is zero at all time—a clearly incorrect
result. So what has gone wrong?

We find the resolution to this difficulty if we try to
use Eq. (11) to solve for the g,, by equating powers of 7.
The expression is valid when 7 < 1, but fails to converge
when 7 > 1. The trick to perform now is to note that
although 7 may be large, it is really only the combination
7/e” that enters the series. If we can find, for any large
value of 7 (> 1), a small time 7 (< 1) for which

T T
e eT

e
then we can replace 7 by 7 in Eq. (14) to have a valid so-
lution for G(7). As illustrated in Fig. 2, it is always pos-
sible to find a value of ¥ < 1 for any 7 > 1. Equation (10)
now gives us a more credible result for the normalized gel
fraction as a function of time, namely,

~ 0 forT<1
Q(OO’T)—{ —I forr>1. (16)

The form of this function is shown in Fig. 3. We see that
the normalized gel fraction remains zero until 7 = 1,
whereupon it initially rises linearly, varying as 2(7 — 1),
and then saturates at unity at large times, where it varies
asl—e™ .

We now study the time behavior of the average of %,
the inverse of the degree of polymerization, with respect
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FIG. 2. This illustrates 7e”7 as a function of 7 and the

relation between ¥ and 7 for 7 > 1.

to the normalized distribution Q(N,7). From the so-
lution for the normalized distribution functions one can
verify that

N=1
1 [Ydy <& N
N=1
1 Y ,dy ~
=;/0 72 1= Qe (17)

T

where y = 7¢”7. When 7 < 1 the integral is trivially
evaluated as 7 — 272, When 7 > 1 we again resort to our
trick of replacing 7 by 7 to find a result valid at large
times and which takes into account the nonzero value of
Q(o00, 7). The overall result is

1 1-17r forr<1
— V= 2 =
<N> {;(f_gm for 7> 1. (18)
We thus see that (1/N) is exactly 1/2 at the gela-
tion transition. The time behavior of (1/N) at these

times is as e” " (see Fig. 4). This exact expression for
(1/N) in this model has been found useful in describ-

1 2 3 4
T
FIG. 3. The normalized probability [@(co,T)] of finding
any monomer to be part of a polymer with infinite degree
of polymerization is shown as a function of normalized time
7. The horizontal line at 1 indicates the asymptotic value of
Q(o0, T) when T — oo.

< N >
1
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FIG. 4. This graph shows (1/N), the average of the re-

ciprocal of the degree of polymerization, as a function of 7.

ing polymerization-induced phase separation in a poly-
mer liquid-crystal mixture [11].

In summary, we have found an interesting kinetic phase
transition in a simple model of multifunctional polymer-
ization. This transition has some similarity to the perco-
lation transition [16]. By introducing a transformation in
which the time variable 7 is replaced by a reduced time
7 we were able to obtain an exact expression for the gel
fraction and for the average of the reciprocal of the de-
gree of polymerization as a function of time. Although
the result is specific to the particular model considered,
the qualitative nature of the results should be indicative
of the behavior to be expected in some more realistic
models.

This work was supported by the NSF Science and Tech-
nology Center Program under Grant No. DMR 89-20147.

APPENDIX

The rate of change of the probability P(N,t) that a
given reaction site be occupied by a monomer forming
part of a polymer of degree of polymerization N is due to
two terms. The first of these is the result of two smaller
molecules combining to form a larger one of degree N,
while the second represents the loss of molecules of degree
N caused by reaction with other molecules.

For the first term we must have a molecule of degree
m combining with one of degree N —m. The probability
that a reaction site is occupied by a molecule of degree m
and is available for further reaction will be the product
A(m)P(m,t). Here A(m) depends on the model chosen
for functionality, being % if only the end units of chains
of bifunctional monomers can react, and being unity if, in
the spirit of a mean-field model that mimics an infinite-
dimensional space, each monomer can form an unlimited
number of bonds. The probability that the other reaction
site is available for formation of a polymer of degree N
is then similarly A(n)P(n,t) with m +n = N. Since
formation of this bond recruits N monomers to form part
of a polymer of degree of N, there is an additional factor
of N. Finally, each bond has coupled two sites, and so we
also have a factor of % to normalize to a rate per reaction
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site. (This factor is present regardless of whether m # n
or m = n, as it does not arise from any correction of
overcounting.) We then have

d

[EP(N,t)] % > A(m)P(m,t)A(n)P(n,t) .

1 m+4n=N

(A1)

The second term requires more careful treatment.
When a polymer of degree N reacts with any other
molecule, it reduces P(N,t), and so we expect a fac-
tor of NA(N)P(N,t) to occur, and a further factor of
> _i A(m)P(m,t) to allow for all possibilities of the
other end of the bond. (No factor of % occurs because
now it is sufficient for either end of the bond to be of
degree N. The special case of m = N requires no correc-
tion factor since the double counting merely reflects the
fact that two polymers of degree N are removed.) We
then have

[%P(N, t)] = —RNA(N)P(V, n; A(m)P(m,1) .

(A2)

Before continuing with the expression for %P(N ,t),
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large number N, and classifying all molecules of degree
larger than N,, as being part of the gel. Adding Egs. (A1)
and (A2) then gives us Eq. (1) of the text, as long as
N < N,. The sum of all terms with N > N, gives the
result

2 Pa)= 5 Y (m+m)Am)Pm, 1) A(m)P(n, 1)
+K Z_ mA(m)P(m,t)AgePeer(t) .  (A3)
m<N,

The first term on the right-hand side represents the union
of two nongel molecules to make a component of the gel,
while the second is the joining of one nongel molecule
to the gel. The factor of  is absent in the second term
because either end of the bond could initially be in the
gel.

This completes the derivation of Eq. (1). As a check,
we note that the sum over all N of 3 P(N,t) vanishes,
as long as the gel is included. To see this we note that
Egs. (A1) and (A3) contain terms that are symmetric in
m and n, so that, for example,

3 (m + n) A(m) P(m, £) A(n) P(n, )

we pause to note that reaction of the gel, for which N
is infinite, with any other molecule does not reduce the =2 ZmA(m)P (m,t)A(n)P(n,t). (A4)
number in the gel. We must thus make a distinction ™
between finite and infinite V. We do this by choosing a Then
|
1d [
— STP(N,t)+ Pea(t)| = D mA(m)P(m,t)A(n)P(n,1)
N=1 m+4+n<N,
Ny u
- > NA(N)P(N,t) (Z A(m)P(m,t) + AgelPsel(t))
N=1 m=1

Ny
+ Y mAm)P(m,t)A(n)P(n,t) + Y mA(m)P(m,t)AgaPea(t) = 0.  (AS5)

m+n>Ny
m,n<Ny

m=1
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